22 research outputs found

    An Unstaggered Constrained Transport Method for the 3D Ideal Magnetohydrodynamic Equations

    Full text link
    Numerical methods for solving the ideal magnetohydrodynamic (MHD) equations in more than one space dimension must either confront the challenge of controlling errors in the discrete divergence of the magnetic field, or else be faced with nonlinear numerical instabilities. One approach for controlling the discrete divergence is through a so-called constrained transport method, which is based on first predicting a magnetic field through a standard finite volume solver, and then correcting this field through the appropriate use of a magnetic vector potential. In this work we develop a constrained transport method for the 3D ideal MHD equations that is based on a high-resolution wave propagation scheme. Our proposed scheme is the 3D extension of the 2D scheme developed by Rossmanith [SIAM J. Sci. Comp. 28, 1766 (2006)], and is based on the high-resolution wave propagation method of Langseth and LeVeque [J. Comp. Phys. 165, 126 (2000)]. In particular, in our extension we take great care to maintain the three most important properties of the 2D scheme: (1) all quantities, including all components of the magnetic field and magnetic potential, are treated as cell-centered; (2) we develop a high-resolution wave propagation scheme for evolving the magnetic potential; and (3) we develop a wave limiting approach that is applied during the vector potential evolution, which controls unphysical oscillations in the magnetic field. One of the key numerical difficulties that is novel to 3D is that the transport equation that must be solved for the magnetic vector potential is only weakly hyperbolic. In presenting our numerical algorithm we describe how to numerically handle this problem of weak hyperbolicity, as well as how to choose an appropriate gauge condition. The resulting scheme is applied to several numerical test cases.Comment: 46 pages, 12 figure

    The Cartesian Grid Active Flux Method with Adaptive Mesh Refinement

    Full text link
    We present the first implementation of the Active Flux method on adaptively refined Cartesian grids. The Active Flux method is a third order accurate finite volume method for hyperbolic conservation laws, which is based on the use of point values as well as cell average values of the conserved quantities. The resulting method has a compact stencil in space and time and good stability properties. The method is implemented as a new solver in ForestClaw, a software for parallel adaptive mesh refinement of patch-based solvers. On each Cartesian grid patch the single grid Active Flux method can be applied. The exchange of data between grid patches is organised via ghost cells. The local stencil in space and time and the availability of the point values that are used for the reconstruction, leads to an efficient implementation. The resulting method is third order accurate, conservative and allows the use of subcycling in time
    corecore